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Wave-front dynamics in systems with directional anomalous diffusion
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In this paper we study the solutions of a generalized reaction-diffusion system with a bistable reaction term,
and considering directional anomalous diffusion. We use the well-known properties of fractional derivatives to
model asymmetric anomalous diffusion, and obtain traveling wave solutions that propagate in a direction that
depends on the metastability of the front, the fractional exponent and the asymmetry of the diffusion.
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I. INTRODUCTION

Anomalous diffusion has attracted considerable attention
in the last decade, this is partly due to the development of
new experimental results [1] and to the realization that ran-
dom walks with Lévy flights diffuse anomalously.

Anomalous diffusion is generally defined by a mean
square displacement which grows with time as

(r(1)?) o 1 (1)

with a# 1. Superdiffusion corresponds to a>1 and subdif-
fusion to a<<1. Some authors have used fractional deriva-
tives to model anomalous diffusion. In some cases fractional
derivatives affect the time evolution [2], while in others it is
involved in the space operator [3]. Metzler and Klafter [4]
report a general overview of fractional transport processes
and, among other things, they mix fractional derivatives both
in time and in space.

Spatial fractional derivatives are used to model superdif-
fusion, associated with Lévy flights [3,5], while the time
fractional derivatives are used to model subdiffusion [2]. Of
course, one may describe a diffusion problem with a master
equation, but in this case there is not a straightforward way
to incorporate force fields and boundary value problems.

Lévy flights produce a step length distribution whose sec-
ond moments diverges [6]. However, if one restricts the oc-
currence of flights in space and time, the time dependence of
the second moment behaves anomalously, as we shall dem-
onstrate in this paper. This is the reason why Lévy flights are
widely used to model problems with anomalous diffusion.

Fractional derivatives are asymmetric operators and one
can define right and left versions of them. The sum of right
and left fractional derivatives is symmetric and has been
used by Zumofen er al. [7] to study the problem of segrega-
tion in a simple reaction under Lévy mixing. This approach
is specially useful in reaction diffusion systems and permits
the study of the effects that anomalous diffusion has on those
systems [8]. Evidence of systems with anomalous diffusion
is found in many fields as diffusion in porous media [9],
plasmas [10], biological tissues [11], and many other physi-
cal systems [12].

There is the need for a general study of the properties of
nonlinear systems under different conditions of anomalous
diffusion. For example, previous works in Turing systems
with space [8] and time [2] fractional operators show that the
range of diffusion coefficient ratios of the two morphogens,
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in which the instability appears, widens up due to the depen-
dence of the Turing bifurcation conditions on the fractional
exponents. A Turing bifurcation is present even in the case
when this ratio is one. Furthermore, the resulting spatial Tur-
ing patterns may acquire a velocity.

The main purpose of this paper is to study a reaction-
diffusion system with superdiffusion and kinetics that gives
the possibility of bistability. Our motivation is that these sys-
tems produce shape preserving smooth fronts that move with
constant velocity in normal diffusion conditions. We concen-
trate on the propagation of wave fronts when diffusion is
asymmetric. There are previous works dealing with the sym-
metric case using a parabolic double well potential [13] and
some studies on asymmetric anomalous diffusion in a Fisher-
Kolmogorov reaction-diffusion equation [3].

This paper is organized as follows, in Sec. II we present
the model used by Zanette [13] and extend it to the case of
asymmetric diffusion. We choose this model for its simplic-
ity and clarity. In Sec. III the results of asymmetric diffusion
are discussed. In Sec. IV some calculations are done by using
another model with a more general and analytical bistable
potential, and we discuss the similarities with the previous
case and the model-independent results. Finally, in the last
section we draw some conclusions.

II. THE MODEL

We start with a one-dimensional model proposed by
Zanette [13] for the evolution of the density of diffusing
particles ¢(x,¢) written in Fourier space,

dip=— DIk P+ wf, )

where a tilde over a quantity stands for the Fourier trans-
form, ¢=[ exp(ikx) p(x,t)dx/ V2, D(; is the generalized dif-
fusion coefficient, in units of length”/time, w is the strength
of the reaction term, f(p)=—¢+ ¢,O(d—¢.). The Heaviside
function O sets ¢, as the critical value, where the function
has the discontinuity. We generalize this model to the case in
which anomalous diffusion is asymmetric. Here we may use
the Lévy Khintchine theorem [1] which defines B-stable
Lévy distributions with arbitrary skewness. Therefore, we
may write

0,b=D.[s(ik)+ (1 = 5)(= i) 1% + of, (3)

where s=(8+1)/2, 0<s=<1 and 1< y<2. Observe that Eq.
(2) corresponds to s=1/2, which is the symmetric case with
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a normalized diffusion coefficient Dy:D(;/ cos(my/2). The
term (ik)”¢ is the Fourier transform of the right-hand frac-
tional derivative _,DY¢ [3] and the term (-ik)?¢ is its
equivalent for the left-hand fractional derivative. Thus, for
s<<1/2 Lévy flights towards the left predominate over those
to the right, so that s might be called the asymmetry param-
eter.

The physical motivation for using fractional derivatives to
study Lévy flights is summarized in Ref. [3]. When f=0 our
model describes a generalized diffusion equation with a spa-
tial asymmetry controlled by s. The solution of the space
fractional diffusion equation, subject to the initial condition
¢(x,0)=45(x) in an infinite domain, is

©

2
P(x,1) = WJ et Vcos[- €7y

0
+ &2s = 1)sin ¢]&-"4¢, (4)

where £€=D tk”, p=x/(D "), and ¢y=y/2. The derivation
of this equation is in the appendix, and the form of ¢ for
D,=1 and r=1 is shown in Fig. 1.

In bistable models, like Eq. [3], there are always wave-
front solutions [14] of the form ¢(x,7)=p(x—vt), whose
Fourier transform is (k,7)=exp(ikvt)p(k,0). Substituting
these expressions into Eq. [3] we obtain

ikv g(k,0) = D [s(ik)” + (1 - 5)(— ik) "]b(k,0) — wep(k,0)

1 .
R 5
V2 ik

where #=x—vt and 6, is the point where ¢(6,)= .. In here
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FIG. 1. Density profiles at fixed y=1.5 and fixed time (D=1
and r=1) for three values of the asymmetry parameter s. Notice that
the three curves have power law tails on the left-hand side and only
the totally asymmetric case (s=1) presents an exponential tail on
the right-hand side. The skewness is inverted for s<<1/2.

we have set the boundary conditions ¢(—0,7)=0 and
¢(°,t)= ¢y, Since the problem is translational invariant, we

set 6,=0 and we solve for ¢(k,0),
d(k,0) = — “,’—ﬂ.l{w +ivk —D.[s(ik)”+ (1 = s)(= ik)"}".
\2mik
(6)

This is only a function of k. Transforming back we obtain

o ” we *0dk
#(6,0)=— lim : : : : : (7)
27 e—0+ J . (= ik + e){ivk — D [s(ik)” + (1 = 5)(= ik) "] + w}
Simplifying the notation, using the variables
® 1y o l/yv
y=|\—/] 6 andu=|—| —
D, y w
and writing i=e'™?, we can see that Eq. [7] is real and its form is
b 2 (kK Ysin(ky)[1 =k cos(ih)] + cos(ky)[uk — k? sin(4) ]}
p)="'{1+=| dk SIRTERe x| (8)
2 7J [1—kYcos(h)]” + [k sin(gh)(1 — 25) + uk]
At the discontinuity (y=0), this can be written as
o 2 (~ — k' sin(y)(2s - 1)dk
¢0) == 1+= T 3 ). ©)
2 m)y [1=kYcos()]” + [k sin(¢h)(1 = 2s) + uk]
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FIG. 2. Adimensional velocity u, as a function of the reaction parameter z for the piecewise linearized bistable model for different values
of the Lévy flight exponents. In (a) the flights are symmetric (s=0.5), in (b) s=0.25 and the flights are partially asymmetric, and in (c) s

=0 and the flights are completely asymmetric towards the left.

This equation reduces to Eq. (14) of Ref. [13] when s
=1/2, except for the normalizing diffusion factor cos(i).
The case of normal diffusion is recovered by substituting y
=2. We define the variable z=1-2¢,/ ¢;,, which runs from
—1 to 1 and that tells us about the relative prevalence of the
two stable states in the bistable model. It is clear that z is just
the negative of the integral indicated in Eq. [9]. In the case of
y=2 the dependence of the adimensional velocity with z is

2z

V1-22

u=-

(10)

In the general case of anomalous diffusion, the function
u(z) can be found numerically.

III. RESULTS

In Fig. 2 we show numerical results for the adimensional
front velocity as a function of z. These data were constructed

using Eq. (9). It is important to notice that in the symmetric
case shown in Fig. 2(a) the velocities are always negative for
z>0 and positive for z<<0, meaning that the front always
moves in such a way that the stable state gains over the
metastable state. It is interesting to notice that in the sym-
metric case the dynamics are derivable from a grand poten-
tial Q(¢),

X))

56 (11)

ﬁz(ﬁ:_

with

0= [ rgwae— [ [ ve-nowguaay.

(12)

The reaction term wf in Eq. (5) corresponds to —dF/d¢, and
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FIG. 3. Values of the Lévy exponent y as a function of the
reaction parameter z for different values of the asymmetry param-
eter s when the profile remains stationary, notice that z=0 for all y
only when s=0.5.

1 1
(92 s
L=y *x-y/oD

Vix—y)= (13)
which comes from the definition of a fractional symmetric
derivative (see the next section). So that dQ)/dt<0 and the
front always advances towards the metastable state region.

In Fig. 2(b) we show that in the case of asymmetric su-
perdiffusion the velocities may be negative for z<<0 which
implies that the metastable state gains over the stable state.
There is a competition between the metastability that moves
the front towards the metastable state and the asymmetry of
the Lévy flights, that in this case opposes this tendency. The
region where the velocities are negative for z<<0 increases as
the anomalous exponent decreases. In Fig. 2(c) we show that
in the extreme case s=0, when there is completely asymmet-
ric diffusion, the behavior of u as a function of 7 is the same
as before but the region of negative velocity becomes larger.

In Fig. 3 we show that for any value of z there is a value
of vy for which there is no wave propagation, except in the
symmetric case where the only value of z consistent with u
=0 is z=0. In this plot we see that all curves converge to the
same point when y=2 as expected for normal diffusion.

The shape preserving fronts can be integrated from Eg.
(8). The form of the profiles z(y)=1-2¢(y)/ ¢, were calcu-
lated for u=0 and z(0)=0.7, and they are shown in Fig. 4(a).
The profile form strongly depends on the asymmetry param-
eter, its width increases with asymmetry and it varies very
rapidly near y=0, as it is made clear by its first derivative
[see Fig. 4(b)]. This effect increases with decreasing s. Keep-
ing the values of u=0 and z(0)=0.7 fixed, we calculated the
values of y by using Eq. (9). We find that y=1.176 for s
=1, y=1.128 for s=0.8, and y=1.053 for 5s=0.6.

IV. CONTINUOUS POTENTIAL

In this section we will show that the characteristics of the
front velocity are independent of the piecewise linearized
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FIG. 4. In (a) we show the profiles z(y)=1-2¢(y)/ ¢, as a func-
tion of distance y for different values of the asymmetry parameter s.
All the profile are stable (#=0) and the anomalous exponent was
chosen so that z(0)=0.7 and increases with s. In (b) we show the
first derivative dz(y)/dy of the profiles as a function of y.

bistable reaction term used in Eq. (3). To show this we nu-
merically analyze front-wave propagation produced by a
continuous reaction term. The model is the following:

3= x(DIb) - j—:;, (14)
where
DIlp= ! > ‘ﬂdy (15)

re-y=J, -0
with 1 <Re(y) <2, and
F($)=5(¢* = 1)+ uo. (16)

This model corresponds to the case s=0, so that we have a
process with completely asymmetric diffusion and then we
shall use the left-hand fractional derivative. In this case the
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FIG. 5. Values of the front velocity u as a function of the reac-
tion parameter u for different values of the anomalous exponent .

parameter u plays the same role as z in the preceding sec-
tion, and it is the negative of a chemical potential. If ©# 0
then the system has two homogeneous stable steady states,
where one is metastable and the other is stable.

In Fig. 5 we show the numerically calculated front veloc-
ity as a function of the parameter u for different values of
the anomalous exponent . All calculations were performed
using a simple Euler method in a grid with 2000 points, with
a time step of Ar=0.005, and using fixed boundary condi-
tions at the values of the two equilibrium states ¢, >0 and
¢_<0. A centered step function of the form ¢, + (¢,
—¢_)®(x—1000) was used as initial condition, and the dif-
fusion coefficient that determines the length scale was Yy,
=30. There we see that the behavior of the front velocity as
a function of the reaction parameter for different values of
the anomalous exponent vy is very similar to that of Fig. 2(c)
of the preceding section.

From these results, it is possible to see that for u=0 we
have a front velocity different from zero that is always nega-
tive. This means that when the two stable steady states are
completely symmetric there is always wave-front propaga-
tion, a fact that never occurs in normal diffusion. It is impor-
tant to emphasize that the physical process responsible for
these phenomenon is the asymmetric superdiffusion, mod-
eled with the asymmetric fractional derivative of Eq. (14).

Notice that the operator defined in Eq. (15), is the
Riemann-Liouville definition of a fractional derivative, and it
is ill defined when y=2. In the numerical calculations we use
the Griinewald-Letnikov discretization [15] for all cases ex-
cept for y=2. In Fig. 5 we have included a numerical calcu-
lation for normal diffusion.

In Fig. 6 we show the front velocity as a function of the
anomalous exponent for three values of the reaction param-
eter w. The values are u=0 (when the two steady stable
states are symmetric), and u=+0.384=~ + u_, where u, is the
value of the reaction parameter when one of the two steady
stable states disappears.

In Fig. 6 it is possible to see how the asymmetry of the
superdiffusion affects the behavior of the wave-front veloc-
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FIG. 6. Values of the front velocity u as a function of the
anomalous exponent 7 for different values of the reaction parameter
M.

ity. One important consequence is that for ©=0.384 the front
velocity reaches a maximum and then decreases until it
changes its sign. This means that for certain values of the
parameter reaction u is possible to change the direction of
wave-front propagation only by manipulating the anomalous
exponent 7. This is equivalent to say that there are some
values for the parameters of the model for which the meta-
stable state overcomes the stable state as a result of a com-
petition between the chemical potential and the asymmetry
of the diffusion, the same result as obtained in Sec. II.

In Fig. 7 we show the front profiles for the reaction pa-
rameter w=0 after 2000 iterations. For this value the func-
tion F has two minima at the same level, and in absence of
anomalous diffusion we have two phases in equilibrium and
the front should not move. However, in the presence of
asymmetric anomalous diffusion, the front acquires a veloc-
ity. The front velocity was measured by following the posi-
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FIG. 7. Profile snapshots corresponding to uw=0 for different
values of y.
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tion where ¢=0. After 400 iterations the profile acquires a
fixed form which then moves with constant velocity. We
have also started with different, initial random conditions in
a region near the center of the lattice and we find that after a
number of iterations (depending on the initial conditions) the
same front appears and moves with the same velocity. This
answers the question posed by Zanette [13], concerning the
behavior of ordinary bistable reaction-diffusion systems un-
der general anomalous diffusion conditions. This behavior
reveals that for almost any initial conditions the system de-
velops shape preserving fronts, traveling with constant ve-
locity.

V. CONCLUSIONS

We have analyzed the traveling wave fronts that occur in
reaction-diffusion bistable systems when superdiffusion is
asymmetric. The main results are that the fronts may move
even when the reaction term is symmetric for all values of
the diffusion exponent 1= vy<2, and for all s# 1/2. Like-
wise, the tendency of the front to move towards the meta-
stable state region may be compensated by the asymmetry of
the Lévy flights, when the fractional exponent is sufficiently
small.

The importance of our work is that it completes the analy-
sis of the behavior of reaction diffusion systems with anoma-
lous diffusion with arbitrary asymmetry. This might turn out
to be important in some applications to real systems, particu-
larly when dealing with diffusion of chemicals in complex
domains, such as tissues and composite media. Although our
analysis is based on a particularly simple model, most of the
conclusions drawn from it should be model independent.
This was verified by using two different kinetics and finding
no qualitatively different results. Of particular interest is the
circumstance of having bistability in the kinetics, because
anomalous diffusion has profound effects on the time evolu-
tion of the interfaces between chemicals allowing for trans-
port. This is evidently of great importance in many practical
applications.

APPENDIX: DIFFUSION WITH FRACTIONAL
DIFFERENTIAL OPERATORS

In here we derive the solution of Eq. (3) when f=0, for
arbitrary right-hand and left-hand fractional derivatives. If
the initial condition is a J-function centered at zero, one can
write

3 -
9 =D ,[(ik)7s + (1 = 5)(= ik)"] b,

P (A1)

where s is the asymmetry parameter and the factors (ik)?”
come from the Fourier transform of the fractional derivative
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operators. This equation can be integrated immediately to
obtain

(PZS(k,I)Z /l_e[(ik)ys+(l—s)(—ik)7]D7I’
N2

since ¢(k,0)=1. Fourier transforming the equation above,
one gets

o

Pn=5- f

Separating the domain of integration in two parts around
zero, one gets two integrals whose imaginary part vanishes
when summing up. Therefore

e—ikx+[(ik) Ys+(1-5)(— ik)y]Dde.

1 o0
d(x,1) = —f k™D <o) cos[— kx + kYD p(25 — 1)
mJo

Xsin(7y/2)]dk. (A2)

Conveniently defining variables one gets Eq. (4) in the
text.
This form exhibits the scaling behavior

Plx,1) = (A3)

2 X
WD) N D7)

Since D=1 and t=1 in Fig. 1, one is plotting the univer-
sal function 2G(x;s)/ . This problem has been examined in
detail before by Paradisi et al. [16] using discrete expres-
sions for the fractional derivatives and calculating numeri-
cally the density distributions. Observe that the integral di-
verges for positive argument of the exponential, that is, it is
only defined for cos(¢)<<0, or 1<y<3. For subdiffusion
(2<y<3) ¢p(x,r) is not well defined. However for 1<<vy
<2, ¢(x,1) represents a density distribution with superdiffu-
sion. The second moment of the distribution can be written
as

2 2y (=
)= 222 [ 26 isidn= D2 (o). (A4)

-0

This integral diverges, as it is well known, but for experi-
mental applications one could set finite integration limits,
since the physical system is confined in space, as it has been
done in Ref. [17], and the mean square displacement grows
with the same exponent a=2/".
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